Ultimate Prime Sieve -- Sieve Of Zakiya (SoZ)

J

jzakiya

This is to announce the release of my paper "Ultimate Prime Sieve --
Sieve of Zakiiya (SoZ)" in which I show and explain the development of
a class of Number Theory Sieves to generate prime numbers. I used
Ruby 1.9.0-1 as my development environment on a P4 2.8 Ghz laptop.

You can get the pdf of my paper and Ruby and Python source from here:

http://www.4shared.com/dir/7467736/97bd7b71/sharing.html

Below is a sample of one of the simple prime generators. I did a
Python version of this in my paper (see Python source too). The Ruby
version below is the minimum array size version, while the Python has
array of size N (I made no attempt to optimize its implementation,
it's to show the method).

class Integer
def primesP3a
# all prime candidates > 3 are of form 6*k+1 and 6*k+5
# initialize sieve array with only these candidate values
# where sieve contains the odd integers representatives
# convert integers to array indices/vals by i = (n-3)>>1 =
(n>>1)-1
n1, n2 = -1, 1; lndx= (self-1) >>1; sieve = []
while n2 < lndx
n1 +=3; n2 += 3; sieve[n1] = n1; sieve[n2] = n2
end
#now initialize sieve array with (odd) primes < 6, resize array
sieve[0] =0; sieve[1]=1; sieve=sieve[0..lndx-1]

5.step(Math.sqrt(self).to_i, 2) do |i|
next unless sieve[(i>>1) - 1]
# p5= 5*i, k = 6*i, p7 = 7*i
# p1 = (5*i-3)>>1; p2 = (7*i-3)>>1; k = (6*i)>>1
i6 = 6*i; p1 = (i6-i-3)>>1; p2 = (i6+i-3)>>1; k = i6>>1
while p1 < lndx
sieve[p1] = nil; sieve[p2] = nil; p1 += k; p2 += k
end
end
return [2] if self < 3
[2]+([nil]+sieve).compact!.map {|i| (i<<1) +3 }
end
end

def primesP3(val):
# all prime candidates > 3 are of form 6*k+(1,5)
# initialize sieve array with only these candidate values
n1, n2 = 1, 5
sieve = [False]*(val+6)
while n2 < val:
n1 += 6; n2 += 6; sieve[n1] = n1; sieve[n2] = n2
# now load sieve with seed primes 3 < pi < 6, in this case just 5
sieve[5] = 5

for i in range( 5, int(ceil(sqrt(val))), 2) :
if not sieve: continue
# p1= 5*i, k = 6*i, p2 = 7*i,
p1 = 5*i; k = p1+i; p2 = k+i
while p2 <= val:
sieve[p1] = False; sieve[p2] = False; p1 += k; p2 += k
if p1 <= val: sieve[p1] = False

primes = [2,3]
if val < 3 : return [2]
primes.extend( i for i in range(5, val+(val&1), 2) if sieve )

return primes

Now to generate an array of the primes up to some N just do:

Ruby: 10000001.primesP3a
Python: primesP3a(10000001)

The paper presents benchmarks with Ruby 1.9.0-1 (YARV). I would love
to see my various prime generators benchmarked with optimized
implementations in other languages. I'm hoping Python gurus will do
better than I, though the methodology is very very simple, since all I
do is additions, multiplications, and array reads/writes.

Have fun with the code. ;-)

Jabari Zakiya
 
J

jzakiya

This is to announce the release of my paper "Ultimate Prime Sieve --
Sieve of Zakiiya (SoZ)" in which I show and explain the development of
a class of Number Theory Sieves to generate prime numbers.   I used
Ruby 1.9.0-1 as my development environment on a P4 2.8 Ghz laptop.

You can get the pdf of my paper and Ruby and Python source from here:

http://www.4shared.com/dir/7467736/97bd7b71/sharing.html

Below is a sample of one of the simple prime generators. I did a
Python version of this in my paper (see Python source too).  The Ruby
version below is the minimum array size version, while the Python has
array of size N (I made no attempt to optimize its implementation,
it's to show the method).

class Integer
   def primesP3a
      # all prime candidates > 3 are of form  6*k+1 and 6*k+5
      # initialize sieve array with only these candidate values
      # where sieve contains the odd integers representatives
      # convert integers to array indices/vals by  i = (n-3)>>1 =
(n>>1)-1
      n1, n2 = -1, 1;  lndx= (self-1) >>1;  sieve = []
      while n2 < lndx
         n1 +=3;   n2 += 3;   sieve[n1] = n1;  sieve[n2] = n2
      end
      #now initialize sieve array with (odd) primes < 6, resize array
      sieve[0] =0;  sieve[1]=1;  sieve=sieve[0..lndx-1]

      5.step(Math.sqrt(self).to_i, 2) do |i|
         next unless sieve[(i>>1) - 1]
         # p5= 5*i,  k = 6*i,  p7 = 7*i
         # p1 = (5*i-3)>>1;  p2 = (7*i-3)>>1;  k = (6*i)>>1
         i6 = 6*i;  p1 = (i6-i-3)>>1;  p2 = (i6+i-3)>>1;  k = i6>>1
         while p1 < lndx
             sieve[p1] = nil;  sieve[p2] = nil;  p1 += k;  p2 += k
         end
      end
      return [2] if self < 3
      [2]+([nil]+sieve).compact!.map {|i| (i<<1) +3 }
   end
end

def primesP3(val):
    # all prime candidates > 3 are of form  6*k+(1,5)
    # initialize sieve array with only these candidate values
    n1, n2 = 1, 5
    sieve = [False]*(val+6)
    while  n2 < val:
        n1 += 6;   n2 += 6;  sieve[n1] = n1;   sieve[n2] = n2
    # now load sieve with seed primes 3 < pi < 6, in this case just 5
    sieve[5] = 5

    for i in range( 5, int(ceil(sqrt(val))), 2) :
       if not sieve:  continue
       #  p1= 5*i,  k = 6*i,  p2 = 7*i,
       p1 = 5*i;  k = p1+i;  p2 = k+i
       while p2 <= val:
          sieve[p1] = False;  sieve[p2] = False;  p1 += k;  p2 += k
       if p1 <= val:  sieve[p1] = False

    primes = [2,3]
    if val < 3 : return [2]
    primes.extend( i for i in range(5, val+(val&1), 2)  if sieve )

    return primes

Now to generate an array of the primes up to some N just do:

Ruby:    10000001.primesP3a
Python: primesP3a(10000001)

The paper presents benchmarks with Ruby 1.9.0-1 (YARV).  I would love
to see my various prime generators benchmarked with optimized
implementations in other languages.  I'm hoping Python gurus will do
better than I, though the methodology is very very simple, since all I
do is additions, multiplications, and array reads/writes.

Have fun with the code.  ;-)


CORRECTION:

http://cr.yp.to/primegen.html NOT "primesgen"

Jabari Zakiya
 
G

George Sakkis

The paper presents benchmarks with Ruby 1.9.0-1 (YARV). I would love
to see my various prime generators benchmarked with optimized
implementations in other languages. I'm hoping Python gurus will do
better than I, though the methodology is very very simple, since all I
do is additions, multiplications, and array reads/writes.

After playing a little with it, I managed to get a 32-47% improvement
on average for the pure Python version, and a 230-650% improvement
with an extra "import psyco; psyco.full()" (pasted at http://codepad.org/C2nQ8syr)
The changes are:

- Replaced range() with xrange()
- Replaced x**2 with x*x
- Replaced (a,b) = (c,d) with a=c; b=d
- Replaced generator expressions with list comprehensions. This was
the big one for letting psyco do its magic.

I also tried adding type declarations and running it through Cython
but the improvement was much less impressive than Psyco. I'm not a
Pyrex/Cython expert though so I may have missed something obvious.

George
 
J

jzakiya

After playing a little with it, I managed to get a 32-47% improvement
on average for the pure Python version, and a 230-650% improvement
with an extra "import psyco; psyco.full()" (pasted athttp://codepad.org/C2nQ8syr)
The changes are:

- Replaced range() with xrange()
- Replaced x**2 with x*x
- Replaced (a,b) = (c,d) with a=c; b=d
- Replaced generator expressions with list comprehensions. This was
the big one for letting psyco do its magic.

I also tried adding type declarations and running it through Cython
but the improvement was much less impressive than Psyco. I'm not a
Pyrex/Cython expert though so I may have missed something obvious.

George

George,

I took your code and included more efficient/optimized versions of
SoZ versions P3, P5, P7, and P11.

I ran the code on my PCLinuxOS, Intel P4, Python 2.4.3 system and
noted this. The SoZ code run much faster than the SoA in pure Python.
When psyco is used the SoA is significantly faster than the
pure Python version. The SoZ versions are faster too, but now
they are slower than the SoA. You can download the code from


http://www.4shared.com/dir/7467736/97bd7b71/sharing.html

It would be interesting to see how this code runs in newer versions
of Python (Psyco).

FYI, someone else coded P7 in C on a QuadCore Intel 9650 3.67GHz
overclocked cpu, using multiple threads, and got it to be faster
than the SoA, SoE, Here's some of his results (times in seconds).

Case nPrime7x nPrime7x nPrime7x nPrime7x
Atkin Zakiya Eratosthenes Zakiya (8 core
2.5ghz)

100 billion 52.58 44.27 50.56

200 b 110.14 92.38 108.99 88.01

300 b 169.81 140.92 167.47

400 b 232.34 190.84 228.08 177.72

500 b 297.44 241.84 291.28

600 b 364.84 293.92 355.27 273.04

700 b 434.33 346.97 420.41

800 b 506.67 400.97 486.72 373.29

900 b 579.58 456.53 555.09

1 trillion 654.03 513.11 624.00 479.22


Jabari
 

Ask a Question

Want to reply to this thread or ask your own question?

You'll need to choose a username for the site, which only take a couple of moments. After that, you can post your question and our members will help you out.

Ask a Question

Staff online

Members online

Forum statistics

Threads
473,734
Messages
2,569,441
Members
44,832
Latest member
GlennSmall

Latest Threads

Top