[QUIZ] Programmer Ping-Pong (#150)

A

Adam Shelly

An easy lob, Enumerable is a simple volley since AVLTree#each already
exists.

Adam opened my eyes to the symmetry that I was missing in the first
part of the double rotations. I extracted the rotate_left and
rotate_right into their own methods and removed the now unnecessary
argument to rebalance.

My new test is for sequential access -- something that an AVLTree
should be able to do in O(log N) time. I'd love for someone to show
how to write a good test forcing the access to be better than O(N) for
a suitably large N.

-Rob

I don't know how to test timing with the unit tests either.
I'm sending a response that passes the tests, but probably won't meet
the timing requirement until each node tracks its own height instead
of recalculates it on demand.
And I'm cheating on the return - Instead of writing a new test, I'm
re-enabling the test_remove_node.
If It weren't midnight I'd do a better job...

-Adam

==> avl_tree.rb <==
class AVLTree

include Enumerable

# Need something smarter than nil for external nodes
class ExternalNode
attr_accessor :parent
def initialize(parent)
@parent = parent
end
def include?(_); false; end
def <<(_); raise RuntimeError; end
def height; 0; end
def balance_factor; 0; end
def left; self; end
def right; self; end
def left=(node)
raise(NotImplementedError,
"external node of #{@parent}")
end
def right=(node)
raise(NotImplementedError,
"external node of #{@parent}")
end
def to_s; ''; end
def to_a; []; end
end

class Node
attr_accessor :data, :parent
attr_reader :left, :right

def initialize obj
@parent = nil
@data = obj
@left = ExternalNode.new(self)
@right = ExternalNode.new(self)
end

def left=(node)
@left = node
node.parent = self
end

def right=(node)
@right = node
node.parent = self
end

def height
[ @left.height, @right.height ].max + 1
end

def << node
case node.data <=> @data
when -1
if Node === @left
@left << node
else
self.left = node
end
when 0
return self # no dups
when +1
if Node === @right
@right << node
else
self.right = node
end
end
rebalance if balance_factor.abs > 1
end

def include? obj
case obj <=> @data
when -1 : @left.include?(obj)
when 0 : true
when +1 : @right.include?(obj)
end
end

def to_a
result = @left.to_a
result << @data
result.concat @right.to_a
result
end

def [](idx)
if idx < (leftheight = @left.height)
@left[idx]
elsif (idx== leftheight)
@data
elsif (idx-=(leftheight+1)) < @right.height
@right[idx]
end
end


def to_s
bf = case balance_factor <=> 0
when -1 : '-' * -balance_factor
when 0 : '.'
when 1 : '+' * balance_factor
end
"[#{left} "+
"(#{@data}{#{height}#{bf}}^#{parent.data})"+
" #{right}]"
end

protected

def balance_factor
@right.height - @left.height
end

def rotate_left
my_parent, from, to = @parent, self, @right
temp = @right.left
@right.left = self
self.right = temp
my_parent.send :replace_child, from, to
to.parent = my_parent
end

def rotate_right
my_parent, from, to = @parent, self, @left
temp = @left.right
@left.right = self
self.left = temp
my_parent.send :replace_child, from, to
to.parent = my_parent
end

def rebalance
if (bf = balance_factor) > 1 # right is too high
if @right.balance_factor < 0
# double rotate right-left
# - first the right subtree
@right.rotate_right
end
rotate_left # single rotate left
elsif bf < -1 # left must be too high
if @left.balance_factor > 0
# double rotate left-right
# - first force left subtree
@left.rotate_left
end
rotate_right # single rotate right
end
end

def replace_child(from, to)
if from.eql? @left
@left = to
elsif from.eql? @right
@right = to
else
raise(ArgumentError,
"#{from} is not a branch of #{self}")
end
end

end

def initialize
@root = nil
end

def empty?
@root.nil?
end

def include?(obj)
empty? ? false : @root.include?(obj)
end

def <<(obj)
raise(ArgumentError,
"Objects added to #{self.class.name} must" +
" respond to <=>"
) unless obj.respond_to?:)<=>)

if empty?
@root = Node.new(obj)
@root.parent = self
else
@root << Node.new(obj)
end
self
end

def height
empty? ? 0 : @root.height
end

# naive implementation [not O(lg N)]
# def [](idx)
# to_a[idx]
# end

def [](idx)
@root[idx]
end

def to_a
empty? ? [] : @root.to_a
end

# naive implementation [not O(lg N)]
def each
to_a.each {|e| yield e}
end

def to_s
empty? ? "[]" : @root.to_s
end

# Indicates that parent is root in to_s
def data; '*'; end

protected

def replace_child(from, to)
if @root.eql? from
@root = to
else
raise(ArgumentError,
"#{from} is not a branch of #{self}")
end
end

end
__END__

==> extract.rb <==
# -*- ruby -*-

file = nil
state = :init
ARGF.each do |line|
case state
when :init
next unless line =~ /^==> (.*) <==$/
if File.exist?($1)
backup = $1+'~'
File.delete(backup) if File.exist?(backup)
File.rename($1, backup)
end
file = File.open($1, 'w')
state = :writing
when :writing
file.write line
if line.chomp == '__END__'
file.close
state = :init
end
end
end
__END__

==> package.rb <==
#!/usr/bin/env ruby -wKU
# -*- ruby -*-

Dir[ARGV[0] || '*.rb'].each do |f|
lines = IO.readlines(f)
lines.unshift "==> #{f} <==\n"
lines << "__END__\n" unless lines.last.chomp == '__END__'
lines << "\n"
puts lines
end
__END__

==> test_avl_tree.rb <==
#!/usr/bin/env ruby -wKU

require "test/unit"
require "avl_tree"

class TestAVLTree < Test::Unit::TestCase
def setup
@tree = AVLTree.new
end

##################################################
# Membership tests
def test_tree_membership
assert_equal(true, @tree.empty?)
assert_equal(false, @tree.include?(3))

@tree << 3

assert_equal(false, @tree.empty?)
assert_equal(true, @tree.include?(3))
end

def test_tree_should_allow_more_than_one_element
@tree << 3
@tree << 4

assert(@tree.include?(4), "4 not in #{@tree}")
assert(@tree.include?(3), "3 not in #{@tree}")
end

def test_tree_include_many
0.upto(10) do |i|
assert_equal(false, @tree.include?(i),
"Tree should not include #{i} yet.")
@tree << i
0.upto(i) do |j|
assert_equal(true, @tree.include?(j),
"Tree should have 0..#{i},"+
" where's #{j}? ")
end
end
end

# This sits at the intersection of membership
# and height tests. We know one node has height 1,
# and two nodes has height 2, so if we insert one
# object twice and the height is 1, there must
# only be one node in the tree.
def test_tree_does_not_keep_duplicates
@tree << 'a'
@tree << 'a'
assert_equal 1, @tree.height, "one node: #{@tree}"
end

##################################################
# Height tests
def test_tree_height_of_one_or_two_nodes_is_N
@tree << 5
assert_equal 1, @tree.height, "one node: #{@tree}"
@tree << 6
assert_equal 2, @tree.height, "two nodes: #{@tree}"
end

def test_tree_height_of_three_nodes_is_two
@tree << 5
@tree << 6
@tree << 7
assert_equal 2, @tree.height, @tree.to_s
end

# RobB: The more precise limit given in [Knuth] is
# used rather than that from [Wikipedia]
def test_tree_growth_limit_is_1pt44_log_N
(1..10).each do |i|
@tree << i
limit = ((1.4405 *
Math::log(i+2.0)/Math::log(2.0)
) - 0.3277).ceil
assert(@tree.height <= limit,
"Tree of #{i} nodes is too tall by" +
" #{@tree.height - limit}" +
" #{@tree}")
end
end

def test_balances_left
4.downto(1) { |i| @tree << i }
assert(@tree.height < 4,
"expected tree height #{@tree.height} < 4")
end

def test_balances_right
1.upto(4) { |i| @tree << i }
assert(@tree.height < 4,
"expected tree height #{@tree.height} < 4")
end

def test_non_sequential_insertion__part_1
items = [ 1, 3, 2 ]
items.each do |i|
@tree << i
end
items.each do |i|
assert_equal(true, @tree.include?(i),
"where is #{i}? ")
end
end

def test_non_sequential_insertion__part_2
items = [ 3, 1, 2 ]
items.each do |i|
@tree << i
end
items.each do |i|
assert_equal(true, @tree.include?(i),
"where is #{i}? ")
end
end

##################################################
# Access tests (getting data back out)

# RobB: this tests too much at one time; I sorted ary.
def test_tree_traverse
ary = [ 3, 5, 17, 30, 42, 54, 1, 2 ].sort

ary.each { |n| @tree << n }
traversal = []
@tree.each { |n| traversal << n }

assert_equal(ary.size, traversal.size)

ary.each do |n|
assert_equal(true, traversal.include?(n),
"#{n} was not visited in tree.")
end
end

def test_tree_find
[1,2,3,4].each{|n| @tree<<n}
assert_equal(1, @tree.find{|v|v>0} )
assert_equal(2, @tree.find{|v|v%2==0} )
end

def test_sequential_access
items = [ 50, 17, 72 ]
items.each { |n| @tree << n }
items.sort.each_with_index do |e,i|
assert_equal(e, @tree,
"@tree[#{i}] should be like " +
"#{items.inspect}.sort[#{i}]")
end
end


# [Knuth] p.473: "The problem of deletion can be solved
# in O(log N) steps if we approach it correctly."
def test_remove_node
@tree << 314
@tree.remove(314)
assert_equal(false, @tree.include?(314),
'314 still in the tree')
end


##################################################
# Things that aren't tested anymore...


# RobB: While I think the spirit of this test is good,
# it attempts to expose the implementation too much.
# I replaced this with test_sequential_access.
def never__test_has_branches
[50, 17, 72].each {|n| @tree << n}
assert_equal 50, @tree.data
assert_equal 17, @tree.left.data
assert_equal 72, @tree.right.data
end

end
=begin
[Knuth] Knuth, Donald Ervin,
The Art of Computer Programming, 2nd ed.
Volume 3, Sorting and Searching,
section 6.2.3 "Balanced Trees", pp. 458-478
[Wikipedia]
AVL Tree, http://en.wikipedia.org/wiki/AVL_tree
=end
__END__
 
J

James Gray

I don't know how to test timing with the unit tests either.

I don't either, but I think I made each() smarter.
And I'm cheating on the return - Instead of writing a new test, I'm
re-enabling the test_remove_node.

I took a first stab at the removal code. I implemented more than was
strictly needed to make the test pass, because I haven't helped out
much yet. However, I may have made mistakes here and we should
definitely add more tests to double-check me.

Before that though, I wanted to see if I could distract us with a
little interface test.

James Edward Gray II

==> avl_tree.rb <==
class AVLTree

include Enumerable

# Need something smarter than nil for external nodes
class ExternalNode
attr_accessor :parent
def initialize(parent)
@parent = parent
end
def include?(_) false end
def <<(_) raise RuntimeError end
def height; 0 end
def balance_factor; 0 end
def left; self end
def right; self end
def each(&iter) end
def left=(node)
raise(NotImplementedError,
"external node of #{@parent}")
end
def right=(node)
raise(NotImplementedError,
"external node of #{@parent}")
end
def to_s; '' end
def to_a; [] end
end

class Node
attr_accessor :data, :parent
attr_reader :left, :right

def initialize obj
@parent = nil
@data = obj
@left = ExternalNode.new(self)
@right = ExternalNode.new(self)
end

def left=(node)
@left = node
node.parent = self
end

def right=(node)
@right = node
node.parent = self
end

def each(&iter)
@left.each(&iter)
iter[data]
@right.each(&iter)
end

def height
[ @left.height, @right.height ].max + 1
end

def << node
case node.data <=> @data
when -1
if Node === @left
@left << node
else
self.left = node
end
when 0
return self # no dups
when +1
if Node === @right
@right << node
else
self.right = node
end
end
rebalance if balance_factor.abs > 1
end

def remove obj
case obj <=> @data
when -1
if Node === @left
@left.remove(obj)
else
nil
end
when 0
if Node === @left
largest = nil
AVLTree.new(@left).each do |n|
largest = n if largest.nil? or n.data > largest.data
end
self.data = largest.data
self.left = largest.left
elsif Node === @right
smallest = nil
AVLTree.new(@right).each do |n|
smallest = n if smallest.nil? or n.data < smallest.data
end
self.data = smallest.data
self.right = smallest.right
else
parent.send :replace_child, self, ExternalNode.new(parent)
end
path = self
while Node === (path = path.parent)
path.rebalance if path.balance_factor.abs > 1
end
self
when +1
if Node === @right
@right.remove(obj)
else
nil
end
end
end

def include? obj
case obj <=> @data
when -1 : @left.include?(obj)
when 0 : true
when +1 : @right.include?(obj)
end
end

def to_a
result = @left.to_a
result << @data
result.concat @right.to_a
result
end

def [](idx)
if idx < (leftheight = @left.height)
@left[idx]
elsif (idx== leftheight)
@data
elsif (idx-=(leftheight+1)) < @right.height
@right[idx]
end
end

def to_s
bf = case balance_factor <=> 0
when -1 : '-' * -balance_factor
when 0 : '.'
when 1 : '+' * balance_factor
end
"[#{left} "+
"(#{@data}{#{height}#{bf}}^#{parent.data})"+
" #{right}]"
end

protected

def balance_factor
@right.height - @left.height
end

def rotate_left
my_parent, from, to = @parent, self, @right
temp = @right.left
@right.left = self
self.right = temp
my_parent.send :replace_child, from, to
to.parent = my_parent
end

def rotate_right
my_parent, from, to = @parent, self, @left
temp = @left.right
@left.right = self
self.left = temp
my_parent.send :replace_child, from, to
to.parent = my_parent
end

def rebalance
if (bf = balance_factor) > 1 # right is too high
if @right.balance_factor < 0
# double rotate right-left
# - first the right subtree
@right.rotate_right
end
rotate_left # single rotate left
elsif bf < -1 # left must be too high
if @left.balance_factor > 0
# double rotate left-right
# - first force left subtree
@left.rotate_left
end
rotate_right # single rotate right
end
end

def replace_child(from, to)
if from.eql? @left
@left = to
elsif from.eql? @right
@right = to
else
raise(ArgumentError,
"#{from} is not a branch of #{self}")
end
end

end

def initialize(root = nil)
@root = root
end

def empty?
@root.nil?
end

def include?(obj)
empty? ? false : @root.include?(obj)
end

def <<(obj)
raise(ArgumentError,
"Objects added to #{self.class.name} must" +
" respond to <=>"
) unless obj.respond_to?:)<=>)

if empty?
@root = Node.new(obj)
@root.parent = self
else
@root << Node.new(obj)
end
self
end

def remove(obj)
@root.remove(obj) unless empty?
end

def height
empty? ? 0 : @root.height
end

def [](idx)
@root[idx]
end

def to_a
empty? ? [] : @root.to_a
end

def each(&iter)
@root.each(&iter) unless empty?
end

def to_s
empty? ? "[]" : @root.to_s
end

# Indicates that parent is root in to_s
def data; '*'; end

protected

def replace_child(from, to)
if @root.eql? from
@root = to
else
raise(ArgumentError,
"#{from} is not a branch of #{self}")
end
end

end
__END__

==> test_avl_tree.rb <==
#!/usr/bin/env ruby -wKU

require "test/unit"
require "avl_tree"

class TestAVLTree < Test::Unit::TestCase
def setup
@tree = AVLTree.new
end

##################################################
# Membership tests
def test_tree_membership
assert_equal(true, @tree.empty?)
assert_equal(false, @tree.include?(3))

@tree << 3

assert_equal(false, @tree.empty?)
assert_equal(true, @tree.include?(3))
end

def test_tree_should_allow_more_than_one_element
@tree << 3
@tree << 4

assert(@tree.include?(4), "4 not in #{@tree}")
assert(@tree.include?(3), "3 not in #{@tree}")
end

def test_tree_include_many
0.upto(10) do |i|
assert_equal(false, @tree.include?(i),
"Tree should not include #{i} yet.")
@tree << i
0.upto(i) do |j|
assert_equal(true, @tree.include?(j),
"Tree should have 0..#{i},"+
" where's #{j}? ")
end
end
end

# This sits at the intersection of membership
# and height tests. We know one node has height 1,
# and two nodes has height 2, so if we insert one
# object twice and the height is 1, there must
# only be one node in the tree.
def test_tree_does_not_keep_duplicates
@tree << 'a'
@tree << 'a'
assert_equal 1, @tree.height, "one node: #{@tree}"
end

##################################################
# Height tests
def test_tree_height_of_one_or_two_nodes_is_N
@tree << 5
assert_equal 1, @tree.height, "one node: #{@tree}"
@tree << 6
assert_equal 2, @tree.height, "two nodes: #{@tree}"
end

def test_tree_height_of_three_nodes_is_two
@tree << 5
@tree << 6
@tree << 7
assert_equal 2, @tree.height, @tree.to_s
end

# RobB: The more precise limit given in [Knuth] is
# used rather than that from [Wikipedia]
def test_tree_growth_limit_is_1pt44_log_N
(1..10).each do |i|
@tree << i
limit = ((1.4405 *
Math::log(i+2.0)/Math::log(2.0)
) - 0.3277).ceil
assert(@tree.height <= limit,
"Tree of #{i} nodes is too tall by" +
" #{@tree.height - limit}" +
" #{@tree}")
end
end

def test_balances_left
4.downto(1) { |i| @tree << i }
assert(@tree.height < 4,
"expected tree height #{@tree.height} < 4")
end

def test_balances_right
1.upto(4) { |i| @tree << i }
assert(@tree.height < 4,
"expected tree height #{@tree.height} < 4")
end

def test_non_sequential_insertion__part_1
items = [ 1, 3, 2 ]
items.each do |i|
@tree << i
end
items.each do |i|
assert_equal(true, @tree.include?(i),
"where is #{i}? ")
end
end

def test_non_sequential_insertion__part_2
items = [ 3, 1, 2 ]
items.each do |i|
@tree << i
end
items.each do |i|
assert_equal(true, @tree.include?(i),
"where is #{i}? ")
end
end

##################################################
# Access tests (getting data back out)

# RobB: this tests too much at one time; I sorted ary.
def test_tree_traverse
ary = [ 3, 5, 17, 30, 42, 54, 1, 2 ].sort

ary.each { |n| @tree << n }
traversal = []
@tree.each { |n| traversal << n }

assert_equal(ary.size, traversal.size)

ary.each do |n|
assert_equal(true, traversal.include?(n),
"#{n} was not visited in tree.")
end
end

def test_tree_find
[1,2,3,4].each{|n| @tree<<n}
assert_equal(1, @tree.find{|v|v>0} )
assert_equal(2, @tree.find{|v|v%2==0} )
end

def test_sequential_access
items = [ 50, 17, 72 ]
items.each { |n| @tree << n }
items.sort.each_with_index do |e,i|
assert_equal(e, @tree,
"@tree[#{i}] should be like " +
"#{items.inspect}.sort[#{i}]")
end
end

# [Knuth] p.473: "The problem of deletion can be solved
# in O(log N) steps if we approach it correctly."
def test_remove_node
@tree << 314
@tree.remove(314)
assert_equal(false, @tree.include?(314),
'314 still in the tree')
end


##################################################
# Interface tests

def test_custom_comparison_code
rev_tree = AVLTree.new { |a, b| b <=> a }
values = [3, 2, 1]
values.each { |v| rev_tree << v }
rev_tree.each { |v| assert_equal(values.shift, v) }

len_tree = AVLTree.new { |a, b| a.length <=> b.length }
values = %w[3 22 111]
values.each { |v| len_tree << v }
len_tree.each { |v| assert_equal(values.shift, v) }
end

end
=begin
[Knuth] Knuth, Donald Ervin,
The Art of Computer Programming, 2nd ed.
Volume 3, Sorting and Searching,
section 6.2.3 "Balanced Trees", pp. 458-478
[Wikipedia]
AVL Tree, http://en.wikipedia.org/wiki/AVL_tree
=end
__END__
 
A

Adam Shelly

I took a first stab at the removal code. I implemented more than was
strictly needed to make the test pass, because I haven't helped out
much yet. However, I may have made mistakes here and we should
definitely add more tests to double-check me.

I added test_remove_multiple_nodes - there are definitely a few
mistakes in the current remove :)
Before that though, I wanted to see if I could distract us with a
little interface test.

Nice test - here's a fairly simple solution.
I also implemented some caching of @height results, in the hopes of
getting closer to that O(log N)

-Adam
==> avl_tree.rb <==
class AVLTree

include Enumerable

# Need something smarter than nil for external nodes
class ExternalNode
attr_accessor :parent
def initialize(parent)
@parent = parent
end
def include?(_) false end
def <<(_) raise RuntimeError end
def height; 0 end
def balance_factor; 0 end
def left; self end
def right; self end
def each(&iter) end
def left=(node)
raise(NotImplementedError,
"external node of #{@parent}")
end
def right=(node)
raise(NotImplementedError,
"external node of #{@parent}")
end
def to_s; '' end
def to_a; [] end
end

class Node
attr_accessor :data, :parent
attr_reader :left, :right

def initialize obj, sortblock
@parent = nil
@data = obj
@left = ExternalNode.new(self)
@right = ExternalNode.new(self)
@height = 1
@compare = sortblock
end

def left=(node)
@height = nil
@left = node
node.parent = self
end

def right=(node)
@height = nil
@right = node
node.parent = self
end

def each(&iter)
@left.each(&iter)
iter[data]
@right.each(&iter)
end

def height
@height || ( [ @left.height, @right.height ].max + 1)
end

def << node
case @compare[node.data,@data]
when -1
if Node === @left
@left << node
else
self.left = node
end
when 0
return self # no dups
when +1
if Node === @right
@right << node
else
self.right = node
end
end
rebalance if balance_factor.abs > 1
@height = nil
end

def remove obj
@height = nil
case @compare[obj,@data]
when -1
if Node === @left
@left.remove(obj)
else
nil
end
when 0
if Node === @left
largest = nil
AVLTree.new(@left).each do |n|
largest = n if largest.nil? or n.data > largest.data
largest = n if largest.nil? or n.data > largest.data
end
self.data = largest.data
self.left = largest.left
elsif Node === @right
smallest = nil
AVLTree.new(@right).each do |n|
smallest = n if smallest.nil? or n.data < smallest.data
smallest = n if smallest.nil? or n.data < smallest.data
end
self.data = smallest.data
self.right = smallest.right
else
parent.send :replace_child, self, ExternalNode.new(parent)
end
path = self
while Node === (path = path.parent)
path.rebalance if path.balance_factor.abs > 1
end
self
when +1
if Node === @right
@right.remove(obj)
else
nil
end
end
end

def include? obj
case obj <=> @data
when -1 : @left.include?(obj)
when 0 : true
when +1 : @right.include?(obj)
end
end

def to_a
result = @left.to_a
result << @data
result.concat @right.to_a
result
end

def [](idx)
if idx < (leftheight = @left.height)
@left[idx]
elsif (idx== leftheight)
@data
elsif (idx-=(leftheight+1)) < @right.height
@right[idx]
end
end

def to_s
bf = case balance_factor <=> 0
when -1 : '-' * -balance_factor
when 0 : '.'
when 1 : '+' * balance_factor
end
"[#{left} "+
"(#{@data}{#{height}#{bf}}^#{parent.data})"+
" #{right}]"
end

protected

def balance_factor
@right.height - @left.height
end

def rotate_left
my_parent, from, to = @parent, self, @right
temp = @right.left
@right.left = self
self.right = temp
my_parent.send :replace_child, from, to
to.parent = my_parent
end

def rotate_right
my_parent, from, to = @parent, self, @left
temp = @left.right
@left.right = self
self.left = temp
my_parent.send :replace_child, from, to
to.parent = my_parent
end

def rebalance
if (bf = balance_factor) > 1 # right is too high
if @right.balance_factor < 0
# double rotate right-left
# - first the right subtree
@right.rotate_right
end
rotate_left # single rotate left
elsif bf < -1 # left must be too high
if @left.balance_factor > 0
# double rotate left-right
# - first force left subtree
@left.rotate_left
end
rotate_right # single rotate right
end
end

def replace_child(from, to)
if from.eql? @left
@left = to
elsif from.eql? @right
@right = to
else
raise(ArgumentError,
"#{from} is not a branch of #{self}")
end
end

end

def initialize(root = nil, &block)
@root = root
if block
raise(ArgumentError,
"Block argument for #{self.class.name} must" +
" take 2 arguments and act as sort function"
) unless block.arity == 2
else
block = proc{|a,b| a<=>b}
end
@compare = block
end

def empty?
@root.nil?
end

def include?(obj)
empty? ? false : @root.include?(obj)
end

def <<(obj)
raise(ArgumentError,
"Objects added to #{self.class.name} must" +
" respond to <=>"
) unless obj.respond_to?:)<=>)

if empty?
@root = Node.new(obj, @compare)
@root.parent = self
else
@root << Node.new(obj, @compare)
end
self
end

def remove(obj)
@root.remove(obj) unless empty?
end

def height
empty? ? 0 : @root.height
end

def [](idx)
@root[idx]
end

def to_a
empty? ? [] : @root.to_a
end

def each(&iter)
@root.each(&iter) unless empty?
end

def to_s
empty? ? "[]" : @root.to_s
end

# Indicates that parent is root in to_s
def data; '*'; end

protected

def replace_child(from, to)
if @root.eql? from
@root = to
else
raise(ArgumentError,
"#{from} is not a branch of #{self}")
end
end

end
__END__

==> test_avl_tree.rb <==
#!/usr/bin/env ruby -wKU

require "test/unit"
require "avl_tree"

class TestAVLTree < Test::Unit::TestCase
def setup
@tree = AVLTree.new
end

##################################################
# Membership tests
def test_tree_membership
assert_equal(true, @tree.empty?)
assert_equal(false, @tree.include?(3))

@tree << 3

assert_equal(false, @tree.empty?)
assert_equal(true, @tree.include?(3))
end

def test_tree_should_allow_more_than_one_element
@tree << 3
@tree << 4

assert(@tree.include?(4), "4 not in #{@tree}")
assert(@tree.include?(3), "3 not in #{@tree}")
end

def test_tree_include_many
0.upto(10) do |i|
assert_equal(false, @tree.include?(i),
"Tree should not include #{i} yet.")
@tree << i
0.upto(i) do |j|
assert_equal(true, @tree.include?(j),
"Tree should have 0..#{i},"+
" where's #{j}? ")
end
end
end

# This sits at the intersection of membership
# and height tests. We know one node has height 1,
# and two nodes has height 2, so if we insert one
# object twice and the height is 1, there must
# only be one node in the tree.
def test_tree_does_not_keep_duplicates
@tree << 'a'
@tree << 'a'
assert_equal 1, @tree.height, "one node: #{@tree}"
end

##################################################
# Height tests
def test_tree_height_of_one_or_two_nodes_is_N
@tree << 5
assert_equal 1, @tree.height, "one node: #{@tree}"
@tree << 6
assert_equal 2, @tree.height, "two nodes: #{@tree}"
end

def test_tree_height_of_three_nodes_is_two
@tree << 5
@tree << 6
@tree << 7
assert_equal 2, @tree.height, @tree.to_s
end

# RobB: The more precise limit given in [Knuth] is
# used rather than that from [Wikipedia]
def test_tree_growth_limit_is_1pt44_log_N
(1..10).each do |i|
@tree << i
limit = ((1.4405 *
Math::log(i+2.0)/Math::log(2.0)
) - 0.3277).ceil
assert(@tree.height <= limit,
"Tree of #{i} nodes is too tall by" +
" #{@tree.height - limit}" +
" #{@tree}")
end
end

def test_balances_left
4.downto(1) { |i| @tree << i }
assert(@tree.height < 4,
"expected tree height #{@tree.height} < 4")
end

def test_balances_right
1.upto(4) { |i| @tree << i }
assert(@tree.height < 4,
"expected tree height #{@tree.height} < 4")
end

def test_non_sequential_insertion__part_1
items = [ 1, 3, 2 ]
items.each do |i|
@tree << i
end
items.each do |i|
assert_equal(true, @tree.include?(i),
"where is #{i}? ")
end
end

def test_non_sequential_insertion__part_2
items = [ 3, 1, 2 ]
items.each do |i|
@tree << i
end
items.each do |i|
assert_equal(true, @tree.include?(i),
"where is #{i}? ")
end
end

##################################################
# Access tests (getting data back out)

# RobB: this tests too much at one time; I sorted ary.
def test_tree_traverse
ary = [ 3, 5, 17, 30, 42, 54, 1, 2 ].sort

ary.each { |n| @tree << n }
traversal = []
@tree.each { |n| traversal << n }

assert_equal(ary.size, traversal.size)

ary.each do |n|
assert_equal(true, traversal.include?(n),
"#{n} was not visited in tree.")
end
end

def test_tree_find
[1,2,3,4].each{|n| @tree<<n}
assert_equal(1, @tree.find{|v|v>0} )
assert_equal(2, @tree.find{|v|v%2==0} )
end

def test_sequential_access
items = [ 50, 17, 72 ]
items.each { |n| @tree << n }
items.sort.each_with_index do |e,i|
assert_equal(e, @tree,
"@tree[#{i}] should be like " +
"#{items.inspect}.sort[#{i}]")
end
end

# [Knuth] p.473: "The problem of deletion can be solved
# in O(log N) steps if we approach it correctly."
def test_remove_node
@tree << 314
@tree.remove(314)
assert_equal(false, @tree.include?(314),
'314 still in the tree')
end

def test_remove_multiple_nodes
items = [ 50, 17, 72, 45, 43, 23 ]
items.each { |n| @tree << n }
puts @tree, @tree.height
@tree.remove(50)
assert_equal(false, @tree.include?(50),
'50 still in the tree')
@tree.remove(72)
assert_equal(false, @tree.include?(72),
'72 still in the tree')
@tree.remove(45)
assert_equal(false, @tree.include?(45),
'45 still in the tree')
assert_equal(2, @tree.height) #tree should have 3 items, height = 2
end



##################################################
# Interface tests

def test_custom_comparison_code
rev_tree = AVLTree.new { |a, b| b <=> a }
values = [3, 2, 1]
values.each { |v| rev_tree << v }
rev_tree.each { |v| assert_equal(values.shift, v) }

len_tree = AVLTree.new { |a, b| a.length <=> b.length }
values = %w[3 22 111]
values.each { |v| len_tree << v }
len_tree.each { |v| assert_equal(values.shift, v) }
end

end
=begin
[Knuth] Knuth, Donald Ervin,
The Art of Computer Programming, 2nd ed.
Volume 3, Sorting and Searching,
section 6.2.3 "Balanced Trees", pp. 458-478
[Wikipedia]
AVL Tree, http://en.wikipedia.org/wiki/AVL_tree
=end
__END__
 

Ask a Question

Want to reply to this thread or ask your own question?

You'll need to choose a username for the site, which only take a couple of moments. After that, you can post your question and our members will help you out.

Ask a Question

Members online

Forum statistics

Threads
473,774
Messages
2,569,599
Members
45,166
Latest member
DollyBff32
Top