Serialization Issue

M

mearvk

I'm trying to serialize an Area (I've subclassed it for serialization
- SerializableArea) but I can't write it out and read it back in. I'm
not sure if its an issue with the Area class (it did complain about
not being serializable when I tried to use Area as a class member of
my Track class directly ) or with the serialization. Ultimately I am
trying to serialize a Track to disk, but I've just been trying to get
Area (or subclass) to serialize properly for the time being.


[START CODE]

import java.awt.geom.*;
import java.io.*;

public class Track implements Serializable
{
Path2D.Double centerLine;

SerializableArea area = null;

String name="";



//constructor
public Track( SerializableArea a, Path2D.Double centerLine)
{
this.centerLine = centerLine;
this.area = a;
}




//setters
public void setName(String name)
{
this.name=name;
}

public void setArea(SerializableArea a)
{
this.area = a;
}


//getters
public Path2D.Double getCenterLine()
{
return this.centerLine;
}

public String getName()
{
return this.name;
}

public SerializableArea getArea()
{
return area;
}
}

[END CODE]

As you can see a track contains a center line (think yellow divider
line) and an area (the actual track boundary). When I try to
serialize this track, the Area portion gets lost between the writing
and reading. A call, for instance, to getBounds() after reading the
track from disk, returns a 0,0,0,0 rectangle - also the isEmpty method
returns true. Both of these behave differently just prior to writing
the data to disk (see print statements in my Actions).

Below are my input and output functions:

[START CODE]

import javax.swing.*;

import java.awt.event.*;

import java.awt.*;

import java.awt.geom.*;

import java.io.*;



public class SaveTrackAction extends AbstractAction

{

GUI gui;



public SaveTrackAction(GUI gui)

{

super("Save Track");



this.gui = gui;

}



public void actionPerformed(ActionEvent ae)

{

try

{

JFileChooser dialog=new JFileChooser();

dialog.setDialogType(JFileChooser.SAVE_DIALOG);

dialog.setDialogTitle("Save Track");



JFrame jframe = this.gui.getJFrame();




if( dialog.showSaveDialog( jframe )==JFileChooser.APPROVE_OPTION )

{

FileOutputStream fos = new
FileOutputStream(dialog.getSelectedFile());



ObjectOutputStream ois = new ObjectOutputStream(fos);



SerializableArea sa = this.gui.getCanvas().getTrack().getArea();



System.out.println("Save:");

System.out.println(sa.getBounds());



ois.writeObject( sa );



fos.flush();

ois.flush();

ois.close();

fos.close();

}

}

catch(Exception e)

{

System.err.println(e);

}

}

}


/**

* @(#)NewTrackAction.java

*

*

* @author

* @version 1.00 2008/3/27

*/

import javax.swing.*;

import java.awt.event.*;

import java.awt.*;

import java.awt.geom.*;

import java.io.*;



public class LoadTrackAction extends AbstractAction

{

GUI gui;



public LoadTrackAction(GUI gui)

{

super("Load Track");



this.gui = gui;



}



public void actionPerformed(ActionEvent ae)

{
try
{
JFileChooser dialog=new JFileChooser();

dialog.setDialogTitle("Load Track");

dialog.setApproveButtonText("Load");




if(dialog.showOpenDialog( LoadTrackAction.this.gui.getJFrame() )==JFileChooser.APPROVE_OPTION)

{

FileInputStream fis = new
FileInputStream(dialog.getSelectedFile());



ObjectInputStream ois = new ObjectInputStream(fis);



SerializableArea sa = (SerializableArea)ois.readObject();
//System.out.println( "Track Name: "+track.getName() );

System.out.println("Track bounding rectangle: "+sa.getBounds() );
System.out.println("Track is singular:
"+sa.isSingular() );
System.out.println("Track is empty:
"+sa.isEmpty() );


//LoadTrackAction.this.gui.getCanvas().setModeratingShape(null);
this.gui.getCanvas().setArea( sa );
//this.gui.getCanvas().setCenterLine( track.getCenterLine() );


//fis.close();
ois.close();
}

}

catch(Exception e)

{

System.err.println(e);

}

}

}


[END CODE]


So, anyways, the "Area" doesn't get serialized and I've been stuck
trying to figure out why. Also, in case it matters I'll include the
subclassed Area, which does implement Serializable (and gets rid of
Area's NotSerializableException).

[START CODE]

import java.awt.geom.*;
import java.io.*;
import java.awt.*;

public class SerializableArea extends Area implements Serializable
{
public SerializableArea()
{
super();
}

public SerializableArea(Shape s)
{
super(s);
}
}

[END CODE]


It may be that for some reason, Area isn't serializable and perhaps
that won't change even if its subclassed to implement Serializable -
or it may be that there's a "hole" in my Area and that somehow
violates the definition of an Area, and so when it gets serialized, it
just breaks. Anyhow, I've spent too much time on what shouldn't be a
problem and could use some other viewpoints on it.

Thanks ahead of time.

Max
 
E

EJP

mearvk said:
public class SerializableArea extends Area implements Serializable
{
}

You need to add readObject() and writeObject() methods to this class
that will read and write the superclass's attributes. See the
Serialization Specification.
 
O

Owen Jacobson

If it contains any fields that don't implement serializable then it
wont work.  You need to declare those fields as transcendent.

http://groups.google.com/group/java-software-develoupment?hl=en

This is a conscious parody of a useful post, right? You're not
*actually* this dense, are you?

1. Please quote the relevant passages of the post you're responding to
so that people who don't see the complete thread have some idea what
you're talking about.

2. Why would anyone on a widely-distributed, community-owned forum
like comp.lang.java.programmer want to migrate to a google group?

3. That's a very, *very* vague description of how resurrection of
serialized instances of children of non-serilaizable classes works.
In more detail:

- The most-derived parent class that does not implement Serializable
is resurrected using the default constructor. In the OP's case, this
is Area(), which creates an area with no data.
- Then, the fields of the remaining, serializable classes are
directly restored from the serialized representation. Alternately,
the resurrected object's readObject() method is invoked to allow it to
deserialize itself.

Since the OP's SerializableArea has no fields of its own and does not
provide a readObject method, the result of the deserialization is
equivalent to 'new SerializableArea()'.

4. It's "transient", not "transcendent".
 
R

Roedy Green

public class SerializableArea extends Area implements Serializable
{
public SerializableArea()
{
super();
}

public SerializableArea(Shape s)
{
super(s);
}
}


Just plopping on "Serializable" is not sufficient. You must deal with
transient fields in the parent with code to restore them. You are
hosed if there are non-transient references to non-serializable
classes in the parent class.

see http://mindprod.com/jgloss/serialization.html
 
M

mearvk

Here's my thinking:

Since Area.java has no getters/setters save for getPathIterator (which
returns an AreaIterator) I have no way of serializing that data
manually (no point in overriding readObject, writeObject). Therefore,
I probably need to serialize the coordinates of the Area themselves
(using its PathIterator), rather than the actual Area or its
PathIterator. Then on the readObject call, reconstruct a Path2D from
the Vector of coordinate points and types.

Is this reasoning sound?

Area.java API: http://java.sun.com/javase/6/docs/api/java/awt/geom/Area.html


Code:
/*
 * @(#)Area.java	1.21 06/02/24
 *
 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 */

package java.awt.geom;

import java.awt.Shape;
import java.awt.Rectangle;
import java.util.Vector;
import java.util.Enumeration;
import java.util.NoSuchElementException;
import sun.awt.geom.Curve;
import sun.awt.geom.Crossings;
import sun.awt.geom.AreaOp;

/**
 * An <code>Area</code> object stores and manipulates a
 * resolution-independent description of an enclosed area of
 * 2-dimensional space.
 * <code>Area</code> objects can be transformed and can perform
 * various Constructive Area Geometry (CAG) operations when combined
 * with other <code>Area</code> objects.
 * The CAG operations include area
 * {@link #add addition}, {@link #subtract subtraction},
 * {@link #intersect intersection}, and {@link #exclusiveOr exclusive
or}.
 * See the linked method documentation for examples of the various
 * operations.
 * <p>
 * The <code>Area</code> class implements the <code>Shape</code>
 * interface and provides full support for all of its hit-testing
 * and path iteration facilities, but an <code>Area</code> is more
 * specific than a generalized path in a number of ways:
 * <ul>
 * <li>Only closed paths and sub-paths are stored.
 *     <code>Area</code> objects constructed from unclosed paths
 *     are implicitly closed during construction as if those paths
 *     had been filled by the <code>Graphics2D.fill</code> method.
 * <li>The interiors of the individual stored sub-paths are all
 *     non-empty and non-overlapping.  Paths are decomposed during
 *     construction into separate component non-overlapping parts,
 *     empty pieces of the path are discarded, and then these
 *     non-empty and non-overlapping properties are maintained
 *     through all subsequent CAG operations.  Outlines of different
 *     component sub-paths may touch each other, as long as they
 *     do not cross so that their enclosed areas overlap.
 * <li>The geometry of the path describing the outline of the
 *     <code>Area</code> resembles the path from which it was
 *     constructed only in that it describes the same enclosed
 *     2-dimensional area, but may use entirely different types
 *     and ordering of the path segments to do so.
 * </ul>
 * Interesting issues which are not always obvious when using
 * the <code>Area</code> include:
 * <ul>
 * <li>Creating an <code>Area</code> from an unclosed (open)
 *     <code>Shape</code> results in a closed outline in the
 *     <code>Area</code> object.
 * <li>Creating an <code>Area</code> from a <code>Shape</code>
 *     which encloses no area (even when "closed") produces an
 *     empty <code>Area</code>.  A common example of this issue
 *     is that producing an <code>Area</code> from a line will
 *     be empty since the line encloses no area.  An empty
 *     <code>Area</code> will iterate no geometry in its
 *     <code>PathIterator</code> objects.
 * <li>A self-intersecting <code>Shape</code> may be split into
 *     two (or more) sub-paths each enclosing one of the
 *     non-intersecting portions of the original path.
 * <li>An <code>Area</code> may take more path segments to
 *     describe the same geometry even when the original
 *     outline is simple and obvious.  The analysis that the
 *     <code>Area</code> class must perform on the path may
 *     not reflect the same concepts of "simple and obvious"
 *     as a human being perceives.
 * </ul>
 *
 * @since 1.2
 */
public class Area implements Shape, Cloneable {
    private static Vector EmptyCurves = new Vector();

    private Vector curves;

    /**
     * Default constructor which creates an empty area.
     * @since 1.2
     */
    public Area() {
	curves = EmptyCurves;
    }

    /**
     * The <code>Area</code> class creates an area geometry from the
     * specified {@link Shape} object.  The geometry is explicitly
     * closed, if the <code>Shape</code> is not already closed.  The
     * fill rule (even-odd or winding) specified by the geometry of
the
     * <code>Shape</code> is used to determine the resulting enclosed
area.
     * @param s  the <code>Shape</code> from which the area is
constructed
     * @throws NullPointerException if <code>s</code> is null
     * @since 1.2
     */
    public Area(Shape s) {
	if (s instanceof Area) {
	    curves = ((Area) s).curves;
	} else {
            curves = pathToCurves(s.getPathIterator(null));
        }
    }

    private static Vector pathToCurves(PathIterator pi) {
	Vector curves = new Vector();
	int windingRule = pi.getWindingRule();
	// coords array is big enough for holding:
	//     coordinates returned from currentSegment (6)
	//     OR
	//         two subdivided quadratic curves (2+4+4=10)
	//         AND
	//             0-1 horizontal splitting parameters
	//             OR
	//             2 parametric equation derivative coefficients
	//     OR
	//         three subdivided cubic curves (2+6+6+6=20)
	//         AND
	//             0-2 horizontal splitting parameters
	//             OR
	//             3 parametric equation derivative coefficients
	double coords[] = new double[23];
	double movx = 0, movy = 0;
	double curx = 0, cury = 0;
	double newx, newy;
	while (!pi.isDone()) {
	    switch (pi.currentSegment(coords)) {
	    case PathIterator.SEG_MOVETO:
		Curve.insertLine(curves, curx, cury, movx, movy);
		curx = movx = coords[0];
		cury = movy = coords[1];
		Curve.insertMove(curves, movx, movy);
		break;
	    case PathIterator.SEG_LINETO:
		newx = coords[0];
		newy = coords[1];
		Curve.insertLine(curves, curx, cury, newx, newy);
		curx = newx;
		cury = newy;
		break;
	    case PathIterator.SEG_QUADTO:
		newx = coords[2];
		newy = coords[3];
		Curve.insertQuad(curves, curx, cury, coords);
		curx = newx;
		cury = newy;
		break;
	    case PathIterator.SEG_CUBICTO:
		newx = coords[4];
		newy = coords[5];
		Curve.insertCubic(curves, curx, cury, coords);
		curx = newx;
		cury = newy;
		break;
	    case PathIterator.SEG_CLOSE:
		Curve.insertLine(curves, curx, cury, movx, movy);
		curx = movx;
		cury = movy;
		break;
	    }
	    pi.next();
	}
	Curve.insertLine(curves, curx, cury, movx, movy);
	AreaOp operator;
	if (windingRule == PathIterator.WIND_EVEN_ODD) {
	    operator = new AreaOp.EOWindOp();
	} else {
	    operator = new AreaOp.NZWindOp();
	}
	return operator.calculate(curves, EmptyCurves);
    }

    /**
     * Adds the shape of the specified <code>Area</code> to the
     * shape of this <code>Area</code>.
     * The resulting shape of this <code>Area</code> will include
     * the union of both shapes, or all areas that were contained
     * in either this or the specified <code>Area</code>.
     * <pre>
     *     // Example:
     *     Area a1 = new Area([triangle 0,0 =&gt; 8,0 =&gt; 0,8]);
     *     Area a2 = new Area([triangle 0,0 =&gt; 8,0 =&gt; 8,8]);
     *     a1.add(a2);
     *
     *        a1(before)     +         a2         =     a1(after)
     *
     *     ################     ################     ################
     *     ##############         ##############     ################
     *     ############             ############     ################
     *     ##########                 ##########     ################
     *     ########                     ########     ################
     *     ######                         ######     ######    ######
     *     ####                             ####     ####        ####
     *     ##                                 ##     ##            ##
     * </pre>
     * @param   rhs  the <code>Area</code> to be added to the
     *          current shape
     * @throws NullPointerException if <code>rhs</code> is null
     * @since 1.2
     */
    public void add(Area rhs) {
	curves = new AreaOp.AddOp().calculate(this.curves, rhs.curves);
	invalidateBounds();
    }

    /**
     * Subtracts the shape of the specified <code>Area</code> from
the
     * shape of this <code>Area</code>.
     * The resulting shape of this <code>Area</code> will include
     * areas that were contained only in this <code>Area</code>
     * and not in the specified <code>Area</code>.
     * <pre>
     *     // Example:
     *     Area a1 = new Area([triangle 0,0 =&gt; 8,0 =&gt; 0,8]);
     *     Area a2 = new Area([triangle 0,0 =&gt; 8,0 =&gt; 8,8]);
     *     a1.subtract(a2);
     *
     *        a1(before)     -         a2         =     a1(after)
     *
     *     ################     ################
     *     ##############         ##############     ##
     *     ############             ############     ####
     *     ##########                 ##########     ######
     *     ########                     ########     ########
     *     ######                         ######     ######
     *     ####                             ####     ####
     *     ##                                 ##     ##
     * </pre>
     * @param   rhs  the <code>Area</code> to be subtracted from the
     *		current shape
     * @throws NullPointerException if <code>rhs</code> is null
     * @since 1.2
     */
    public void subtract(Area rhs) {
	curves = new AreaOp.SubOp().calculate(this.curves, rhs.curves);
	invalidateBounds();
    }

    /**
     * Sets the shape of this <code>Area</code> to the intersection
of
     * its current shape and the shape of the specified <code>Area</
code>.
     * The resulting shape of this <code>Area</code> will include
     * only areas that were contained in both this <code>Area</code>
     * and also in the specified <code>Area</code>.
     * <pre>
     *     // Example:
     *     Area a1 = new Area([triangle 0,0 =&gt; 8,0 =&gt; 0,8]);
     *     Area a2 = new Area([triangle 0,0 =&gt; 8,0 =&gt; 8,8]);
     *     a1.intersect(a2);
     *
     *      a1(before)   intersect     a2         =     a1(after)
     *
     *     ################     ################     ################
     *     ##############         ##############       ############
     *     ############             ############         ########
     *     ##########                 ##########           ####
     *     ########                     ########
     *     ######                         ######
     *     ####                             ####
     *     ##                                 ##
     * </pre>
     * @param   rhs  the <code>Area</code> to be intersected with this
     *		<code>Area</code>
     * @throws NullPointerException if <code>rhs</code> is null
     * @since 1.2
     */
    public void intersect(Area rhs) {
	curves = new AreaOp.IntOp().calculate(this.curves, rhs.curves);
	invalidateBounds();
    }

    /**
     * Sets the shape of this <code>Area</code> to be the combined
area
     * of its current shape and the shape of the specified <code>Area</
code>,
     * minus their intersection.
     * The resulting shape of this <code>Area</code> will include
     * only areas that were contained in either this <code>Area</code>
     * or in the specified <code>Area</code>, but not in both.
     * <pre>
     *     // Example:
     *     Area a1 = new Area([triangle 0,0 =&gt; 8,0 =&gt; 0,8]);
     *     Area a2 = new Area([triangle 0,0 =&gt; 8,0 =&gt; 8,8]);
     *     a1.exclusiveOr(a2);
     *
     *        a1(before)    xor        a2         =     a1(after)
     *
     *     ################     ################
     *     ##############         ##############     ##            ##
     *     ############             ############     ####        ####
     *     ##########                 ##########     ######    ######
     *     ########                     ########     ################
     *     ######                         ######     ######    ######
     *     ####                             ####     ####        ####
     *     ##                                 ##     ##            ##
     * </pre>
     * @param   rhs  the <code>Area</code> to be exclusive ORed with
this
     *		<code>Area</code>.
     * @throws NullPointerException if <code>rhs</code> is null
     * @since 1.2
     */
    public void exclusiveOr(Area rhs) {
	curves = new AreaOp.XorOp().calculate(this.curves, rhs.curves);
	invalidateBounds();
    }

    /**
     * Removes all of the geometry from this <code>Area</code> and
     * restores it to an empty area.
     * @since 1.2
     */
    public void reset() {
	curves = new Vector();
	invalidateBounds();
    }

    /**
     * Tests whether this <code>Area</code> object encloses any area.
     * @return    <code>true</code> if this <code>Area</code> object
     * represents an empty area; <code>false</code> otherwise.
     * @since 1.2
     */
    public boolean isEmpty() {
	return (curves.size() == 0);
    }

    /**
     * Tests whether this <code>Area</code> consists entirely of
     * straight edged polygonal geometry.
     * @return    <code>true</code> if the geometry of this
     * <code>Area</code> consists entirely of line segments;
     * <code>false</code> otherwise.
     * @since 1.2
     */
    public boolean isPolygonal() {
	Enumeration enum_ = curves.elements();
	while (enum_.hasMoreElements()) {
	    if (((Curve) enum_.nextElement()).getOrder() > 1) {
		return false;
	    }
	}
	return true;
    }

    /**
     * Tests whether this <code>Area</code> is rectangular in shape.
     * @return    <code>true</code> if the geometry of this
     * <code>Area</code> is rectangular in shape; <code>false</code>
     * otherwise.
     * @since 1.2
     */
    public boolean isRectangular() {
	int size = curves.size();
	if (size == 0) {
	    return true;
	}
	if (size > 3) {
	    return false;
	}
	Curve c1 = (Curve) curves.get(1);
	Curve c2 = (Curve) curves.get(2);
	if (c1.getOrder() != 1 || c2.getOrder() != 1) {
	    return false;
	}
	if (c1.getXTop() != c1.getXBot() || c2.getXTop() != c2.getXBot()) {
	    return false;
	}
	if (c1.getYTop() != c2.getYTop() || c1.getYBot() != c2.getYBot()) {
	    // One might be able to prove that this is impossible...
	    return false;
	}
	return true;
    }

    /**
     * Tests whether this <code>Area</code> is comprised of a single
     * closed subpath.  This method returns <code>true</code> if the
     * path contains 0 or 1 subpaths, or <code>false</code> if the
path
     * contains more than 1 subpath.  The subpaths are counted by the
     * number of {@link PathIterator#SEG_MOVETO SEG_MOVETO}  segments
     * that appear in the path.
     * @return    <code>true</code> if the <code>Area</code> is
comprised
     * of a single basic geometry; <code>false</code> otherwise.
     * @since 1.2
     */
    public boolean isSingular() {
	if (curves.size() < 3) {
	    return true;
	}
	Enumeration enum_ = curves.elements();
	enum_.nextElement(); // First Order0 "moveto"
	while (enum_.hasMoreElements()) {
	    if (((Curve) enum_.nextElement()).getOrder() == 0) {
		return false;
	    }
	}
	return true;
    }

    private Rectangle2D cachedBounds;
    private void invalidateBounds() {
	cachedBounds = null;
    }
    private Rectangle2D getCachedBounds() {
	if (cachedBounds != null) {
	    return cachedBounds;
	}
	Rectangle2D r = new Rectangle2D.Double();
	if (curves.size() > 0) {
	    Curve c = (Curve) curves.get(0);
	    // First point is always an order 0 curve (moveto)
	    r.setRect(c.getX0(), c.getY0(), 0, 0);
	    for (int i = 1; i < curves.size(); i++) {
		((Curve) curves.get(i)).enlarge(r);
	    }
	}
	return (cachedBounds = r);
    }

    /**
     * Returns a high precision bounding {@link Rectangle2D} that
     * completely encloses this <code>Area</code>.
     * <p>
     * The Area class will attempt to return the tightest bounding
     * box possible for the Shape.  The bounding box will not be
     * padded to include the control points of curves in the outline
     * of the Shape, but should tightly fit the actual geometry of
     * the outline itself.
     * @return    the bounding <code>Rectangle2D</code> for the
     * <code>Area</code>.
     * @since 1.2
     */
    public Rectangle2D getBounds2D() {
	return getCachedBounds().getBounds2D();
    }

    /**
     * Returns a bounding {@link Rectangle} that completely encloses
     * this <code>Area</code>.
     * <p>
     * The Area class will attempt to return the tightest bounding
     * box possible for the Shape.  The bounding box will not be
     * padded to include the control points of curves in the outline
     * of the Shape, but should tightly fit the actual geometry of
     * the outline itself.  Since the returned object represents
     * the bounding box with integers, the bounding box can only be
     * as tight as the nearest integer coordinates that encompass
     * the geometry of the Shape.
     * @return    the bounding <code>Rectangle</code> for the
     * <code>Area</code>.
     * @since 1.2
     */
    public Rectangle getBounds() {
	return getCachedBounds().getBounds();
    }

    /**
     * Returns an exact copy of this <code>Area</code> object.
     * @return    Created clone object
     * @since 1.2
     */
    public Object clone() {
	return new Area(this);
    }

    /**
     * Tests whether the geometries of the two <code>Area</code>
objects
     * are equal.
     * This method will return false if the argument is null.
     * @param   other  the <code>Area</code> to be compared to this
     *		<code>Area</code>
     * @return  <code>true</code> if the two geometries are equal;
     *		<code>false</code> otherwise.
     * @since 1.2
     */
    public boolean equals(Area other) {
	// REMIND: A *much* simpler operation should be possible...
	// Should be able to do a curve-wise comparison since all Areas
	// should evaluate their curves in the same top-down order.
	if (other == this) {
	    return true;
	}
	if (other == null) {
	    return false;
	}
	Vector c = new AreaOp.XorOp().calculate(this.curves, other.curves);
	return c.isEmpty();
    }

    /**
     * Transforms the geometry of this <code>Area</code> using the
specified
     * {@link AffineTransform}.  The geometry is transformed in place,
which
     * permanently changes the enclosed area defined by this object.
     * @param t  the transformation used to transform the area
     * @throws NullPointerException if <code>t</code> is null
     * @since 1.2
     */
    public void transform(AffineTransform t) {
        if (t == null) {
            throw new NullPointerException("transform must not be
null");
        }
	// REMIND: A simpler operation can be performed for some types
	// of transform.
        curves = pathToCurves(getPathIterator(t));
	invalidateBounds();
    }

    /**
     * Creates a new <code>Area</code> object that contains the same
     * geometry as this <code>Area</code> transformed by the specified
     * <code>AffineTransform</code>.  This <code>Area</code> object
     * is unchanged.
     * @param t  the specified <code>AffineTransform</code> used to
transform
     *           the new <code>Area</code>
     * @throws NullPointerException if <code>t</code> is null
     * @return   a new <code>Area</code> object representing the
transformed
     *           geometry.
     * @since 1.2
     */
    public Area createTransformedArea(AffineTransform t) {
        Area a = new Area(this);
        a.transform(t);
        return a;
    }

    /**
     * {@inheritDoc}
     * @since 1.2
     */
    public boolean contains(double x, double y) {
	if (!getCachedBounds().contains(x, y)) {
	    return false;
	}
	Enumeration enum_ = curves.elements();
	int crossings = 0;
	while (enum_.hasMoreElements()) {
	    Curve c = (Curve) enum_.nextElement();
	    crossings += c.crossingsFor(x, y);
	}
	return ((crossings & 1) == 1);
    }

    /**
     * {@inheritDoc}
     * @since 1.2
     */
    public boolean contains(Point2D p) {
	return contains(p.getX(), p.getY());
    }

    /**
     * {@inheritDoc}
     * @since 1.2
     */
    public boolean contains(double x, double y, double w, double h) {
	if (w < 0 || h < 0) {
	    return false;
	}
	if (!getCachedBounds().contains(x, y, w, h)) {
	    return false;
	}
	Crossings c = Crossings.findCrossings(curves, x, y, x+w, y+h);
	return (c != null && c.covers(y, y+h));
    }

    /**
     * {@inheritDoc}
     * @since 1.2
     */
    public boolean contains(Rectangle2D r) {
	return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());
    }

    /**
     * {@inheritDoc}
     * @since 1.2
     */
    public boolean intersects(double x, double y, double w, double h)
{
	if (w < 0 || h < 0) {
	    return false;
	}
	if (!getCachedBounds().intersects(x, y, w, h)) {
	    return false;
	}
	Crossings c = Crossings.findCrossings(curves, x, y, x+w, y+h);
	return (c == null || !c.isEmpty());
    }

    /**
     * {@inheritDoc}
     * @since 1.2
     */
    public boolean intersects(Rectangle2D r) {
	return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
    }

    /**
     * Creates a {@link PathIterator} for the outline of this
     * <code>Area</code> object.  This <code>Area</code> object is
unchanged.
     * @param at an optional <code>AffineTransform</code> to be
applied to
     * the coordinates as they are returned in the iteration, or
     * <code>null</code> if untransformed coordinates are desired
     * @return    the <code>PathIterator</code> object that returns
the
     *		geometry of the outline of this <code>Area</code>, one
     *		segment at a time.
     * @since 1.2
     */
    public PathIterator getPathIterator(AffineTransform at) {
	return new AreaIterator(curves, at);
    }

    /**
     * Creates a <code>PathIterator</code> for the flattened outline
of
     * this <code>Area</code> object.  Only uncurved path segments
     * represented by the SEG_MOVETO, SEG_LINETO, and SEG_CLOSE point
     * types are returned by the iterator.  This <code>Area</code>
     * object is unchanged.
     * @param at an optional <code>AffineTransform</code> to be
     * applied to the coordinates as they are returned in the
     * iteration, or <code>null</code> if untransformed coordinates
     * are desired
     * @param flatness the maximum amount that the control points
     * for a given curve can vary from colinear before a subdivided
     * curve is replaced by a straight line connecting the end points
     * @return    the <code>PathIterator</code> object that returns
the
     * geometry of the outline of this <code>Area</code>, one segment
     * at a time.
     * @since 1.2
     */
    public PathIterator getPathIterator(AffineTransform at, double
flatness) {
	return new FlatteningPathIterator(getPathIterator(at), flatness);
    }
}

class AreaIterator implements PathIterator {
    private AffineTransform transform;
    private Vector curves;
    private int index;
    private Curve prevcurve;
    private Curve thiscurve;

    public AreaIterator(Vector curves, AffineTransform at) {
	this.curves = curves;
	this.transform = at;
	if (curves.size() >= 1) {
	    thiscurve = (Curve) curves.get(0);
	}
    }

    public int getWindingRule() {
	// REMIND: Which is better, EVEN_ODD or NON_ZERO?
	//         The paths calculated could be classified either way.
	//return WIND_EVEN_ODD;
	return WIND_NON_ZERO;
    }

    public boolean isDone() {
	return (prevcurve == null && thiscurve == null);
    }

    public void next() {
	if (prevcurve != null) {
	    prevcurve = null;
	} else {
	    prevcurve = thiscurve;
	    index++;
	    if (index < curves.size()) {
		thiscurve = (Curve) curves.get(index);
		if (thiscurve.getOrder() != 0 &&
		    prevcurve.getX1() == thiscurve.getX0() &&
		    prevcurve.getY1() == thiscurve.getY0())
		{
		    prevcurve = null;
		}
	    } else {
		thiscurve = null;
	    }
	}
    }

    public int currentSegment(float coords[]) {
	double dcoords[] = new double[6];
	int segtype = currentSegment(dcoords);
	int numpoints = (segtype == SEG_CLOSE ? 0
			 : (segtype == SEG_QUADTO ? 2
			    : (segtype == SEG_CUBICTO ? 3
			       : 1)));
	for (int i = 0; i < numpoints * 2; i++) {
	    coords[i] = (float) dcoords[i];
	}
	return segtype;
    }

    public int currentSegment(double coords[]) {
	int segtype;
	int numpoints;
	if (prevcurve != null) {
	    // Need to finish off junction between curves
	    if (thiscurve == null || thiscurve.getOrder() == 0) {
		return SEG_CLOSE;
	    }
	    coords[0] = thiscurve.getX0();
	    coords[1] = thiscurve.getY0();
	    segtype = SEG_LINETO;
	    numpoints = 1;
	} else if (thiscurve == null) {
	    throw new NoSuchElementException("area iterator out of bounds");
	} else {
	    segtype = thiscurve.getSegment(coords);
	    numpoints = thiscurve.getOrder();
	    if (numpoints == 0) {
		numpoints = 1;
	    }
	}
	if (transform != null) {
	    transform.transform(coords, 0, coords, 0, numpoints);
	}
	return segtype;
    }
}
 
E

Eric Sosman

Roedy said:
he means "transient".

No, "translucent," meaning "through a glass, darkly,"
which is as good a description of serialization as one
could wish for.
 
L

Lew

Lord Zoltar said :
Eric said:
No, "translucent," meaning "through a glass, darkly,"
which is as good a description of serialization as one
could wish for.

Brilliantly put, and accurate, but the deuce is that Serializable can be
useful if one is willing to go through all the work to design a class to use
it correctly.

Since I'm going through all the work to learn to persist object models, I'm
studying OpenJPA and Hibernate.
<http://openjpa.apache.org/>
<http://www.hibernate.org/>

I hypothesize that the stack of JSF on Tomcat with a PostgreSQL back end
mediated through a JPA layer, perhaps with Spring injection, is a viable way
for a solo practitioner to make sturdy, scalable apps. You get tired of
reinventing the persistence layer with every project, and I don't have time
part-time nor personnel to invest in the kind of large-team process they use
at work. The Graal is to make big apps with just li'l ol' me.
 
R

Roedy Green

I have no way of serializing that data

there are two flavours of serialisation. The usual kind and the
Javabean kind that generates XML.

Perhaps the way out is to use the other type.
 

Ask a Question

Want to reply to this thread or ask your own question?

You'll need to choose a username for the site, which only take a couple of moments. After that, you can post your question and our members will help you out.

Ask a Question

Members online

No members online now.

Forum statistics

Threads
473,769
Messages
2,569,582
Members
45,065
Latest member
OrderGreenAcreCBD

Latest Threads

Top