A
Anton
Hornestly, it was the hardest quiz I have ever solved. Maybe because I
am not so experienced as you are. I have two solutions.
First one is straightforward. It walks an array and finds the max
sub-array. I wrote it just to get the right answers.
The second one took me almost 15 hours to find and code But... it
seems to work actually! I stopped reading at "Unit testing" so for now
I don't know how to do that.
Comments concerning the algorithm:
1. I decided that it's OK to truncate all negative elements at the
both sides of an array. They really do not do any good and do not
promise any positive elements behind them.
2. I built a sumtree walking an array and summing each pair into the
next tree that is smaller than a previous one until I got 1 element
left (which is the root). You can understand the idea easily if you
draw it on a piece of paper. And I also built another tree with
different pairs. That's why I added variable - mb(magic byte).
3. sumtree.flatten.max returns a max subtree.
4. Then I found a formula to find where exactly I should cut a sub-array.
length = 2.power!(max[0])
from = length * max[1]
and used it to find a contender subarray. Why contender? Because it is
needed to use another tree which is built in a different way with
different pairs.
5. At the end I find a subarray or subarrays from contenders with a max sum.
Please don't kick me hard if something is incorrect And I would
like to get a few suggestions about improvements and corrections of
my, maybe dirty, ruby coding style.
http://pastie.caboo.se/78977
#2nd solution
require 'term/ansicolor'
include Term::ANSIColor
def cut_negatives_elements_at_both_sides(arr)
# cut unnecessary negative elements at the start
if arr.first <= 0
arr.each_index() do |i|
if arr.at(i) <= 0
arr.delete_at(i)
retry
else
break
end
end
end
# cut unnecessary negative elements at the end
if arr.last <= 0
(arr.size-1).downto(0) do |i|
if arr.at(i) <= 0
arr.delete_at(i)
retry
else
break
end
end
end
end
def max_sub_array(arr)
cut_negatives_elements_at_both_sides(arr)
contenders = []
answers_sums = []
0.upto(1) do |mb| #magic byte
level = 0
sumtree = []
sumtree[0] = arr # create level #0
while sumtree[level].size > 1
next_level = level + 1
sumtree[next_level] = []
(0...sumtree[level].size/2).each do |i|
if mb == 1 && level == 0 && i == 0
sumtree[next_level] << sumtree[level].at(0)
next
elsif mb == 1 && level == 0
sumtree[next_level] << sumtree[level].at(i*2-1) +
sumtree[level].at(i*2+1-1)
else
sumtree[next_level] << sumtree[level].at(i*2) + sumtree[level].at(i*2+1)
end
end
if mb == 1 && level == 0 && sumtree[level].size % 2 == 0
sumtree[next_level] << sumtree[level].last
end
if sumtree[level].size % 2 != 0
sumtree[next_level] << sumtree[level].last
end
level += 1
end
#puts "sumtree: #{sumtree.inspect}" #DEBUG CHECK
#puts "Max: #{sumtree.flatten.max()}".red.bold
max_sum = sumtree.flatten.max()
max_at = [] #array of max_sum coordinates [[x,y], [x,y] ...]
sumtree.each_index() do |i|
sumtree.at(i).each_index() do |j|
if sumtree.at(i).at(j) == max_sum
max_at << [i,j]
end
end
end
max_at.each do |max|
#puts "Coords: #{max.inspect}".blue.bold
length = 2.power!(max[0])
from = length * max[1]
if mb == 1
from -= 1
length += 1
end
contender_subarray = sumtree.first[from, length]
contenders << contender_subarray
#puts "Contender sub-array: #{contender_subarray.inspect}".green.bold
answers_sums << contender_subarray.inject {|a,b| a+b}
end
end
winners = []
max = answers_sums.max()
answers_sums.each_index do |i|
winners << i if answers_sums.at(i).eql?(max)
end
winners_sub_arrays = []
winners.each do |i|
winners_sub_arrays << contenders.at(i)
end
return winners_sub_arrays
end
begin
arr = Array.new
arr_str = ARGV.to_s
if arr_str =~ /\A\s*\[\s*-?\d+(?:\s*,\s*-?\d+)*\s*\]\s*\Z/
for el in ARGV do
el = el.match(/(\-*\d+)/)
arr << el[0].to_i
end
else
raise "Please specify an array in [a, b, c] format"
end
sub_arr = max_sub_array(arr)
if sub_arr.size > 1
puts "Max sub-arrays are: #{sub_arr.inspect()}".blue.bold
else
puts "Max sub-array is: #{sub_arr.inspect()}".blue.bold
end
rescue RuntimeError => e
$stderr.puts e.message()
end
#1st solution
require 'term/ansicolor'
include Term::ANSIColor
class Array
def sum_all_elements
self.inject {|a,b| a + b}
end
end
def find_min(arr)
arr = arr.dup
arr.collect! {|n| if n < 0 then n end}
arr.compact!
arr.empty? ? 0 : arr.sum_all_elements()
end
def max_sub_array(arr)
max = find_min(arr)
sub_arrays = []
(0...arr.size).each() do |n|
(1..arr.size-n).each() do |n2|
sum = arr[n, n2].sum_all_elements()
#puts arr[n, n2].inspect() + " = " + sum.to_s() #DEBUG LINE
if sum == max
sub_arrays << arr[n, n2].inspect()
elsif sum > max
max = sum
sub_arrays = []
sub_arrays << arr[n, n2].inspect()
end
end
end
sub_arrays
end
begin
arr = Array.new
arr_str = ARGV.to_s
if arr_str =~ /\A\s*\[\s*-?\d+(?:\s*,\s*-?\d+)*\s*\]\s*\Z/
for el in ARGV do
el = el.match(/(\-*\d+)/)
arr << el[0].to_i
end
else
raise "Please specify an array in [a, b, c] format"
end
puts "Max sub-arrays are: #{max_sub_array(arr).inspect.green.bold}"
rescue RuntimeError => e
$stderr.puts e.message()
end
am not so experienced as you are. I have two solutions.
First one is straightforward. It walks an array and finds the max
sub-array. I wrote it just to get the right answers.
The second one took me almost 15 hours to find and code But... it
seems to work actually! I stopped reading at "Unit testing" so for now
I don't know how to do that.
Comments concerning the algorithm:
1. I decided that it's OK to truncate all negative elements at the
both sides of an array. They really do not do any good and do not
promise any positive elements behind them.
2. I built a sumtree walking an array and summing each pair into the
next tree that is smaller than a previous one until I got 1 element
left (which is the root). You can understand the idea easily if you
draw it on a piece of paper. And I also built another tree with
different pairs. That's why I added variable - mb(magic byte).
3. sumtree.flatten.max returns a max subtree.
4. Then I found a formula to find where exactly I should cut a sub-array.
length = 2.power!(max[0])
from = length * max[1]
and used it to find a contender subarray. Why contender? Because it is
needed to use another tree which is built in a different way with
different pairs.
5. At the end I find a subarray or subarrays from contenders with a max sum.
Please don't kick me hard if something is incorrect And I would
like to get a few suggestions about improvements and corrections of
my, maybe dirty, ruby coding style.
http://pastie.caboo.se/78977
#2nd solution
require 'term/ansicolor'
include Term::ANSIColor
def cut_negatives_elements_at_both_sides(arr)
# cut unnecessary negative elements at the start
if arr.first <= 0
arr.each_index() do |i|
if arr.at(i) <= 0
arr.delete_at(i)
retry
else
break
end
end
end
# cut unnecessary negative elements at the end
if arr.last <= 0
(arr.size-1).downto(0) do |i|
if arr.at(i) <= 0
arr.delete_at(i)
retry
else
break
end
end
end
end
def max_sub_array(arr)
cut_negatives_elements_at_both_sides(arr)
contenders = []
answers_sums = []
0.upto(1) do |mb| #magic byte
level = 0
sumtree = []
sumtree[0] = arr # create level #0
while sumtree[level].size > 1
next_level = level + 1
sumtree[next_level] = []
(0...sumtree[level].size/2).each do |i|
if mb == 1 && level == 0 && i == 0
sumtree[next_level] << sumtree[level].at(0)
next
elsif mb == 1 && level == 0
sumtree[next_level] << sumtree[level].at(i*2-1) +
sumtree[level].at(i*2+1-1)
else
sumtree[next_level] << sumtree[level].at(i*2) + sumtree[level].at(i*2+1)
end
end
if mb == 1 && level == 0 && sumtree[level].size % 2 == 0
sumtree[next_level] << sumtree[level].last
end
if sumtree[level].size % 2 != 0
sumtree[next_level] << sumtree[level].last
end
level += 1
end
#puts "sumtree: #{sumtree.inspect}" #DEBUG CHECK
#puts "Max: #{sumtree.flatten.max()}".red.bold
max_sum = sumtree.flatten.max()
max_at = [] #array of max_sum coordinates [[x,y], [x,y] ...]
sumtree.each_index() do |i|
sumtree.at(i).each_index() do |j|
if sumtree.at(i).at(j) == max_sum
max_at << [i,j]
end
end
end
max_at.each do |max|
#puts "Coords: #{max.inspect}".blue.bold
length = 2.power!(max[0])
from = length * max[1]
if mb == 1
from -= 1
length += 1
end
contender_subarray = sumtree.first[from, length]
contenders << contender_subarray
#puts "Contender sub-array: #{contender_subarray.inspect}".green.bold
answers_sums << contender_subarray.inject {|a,b| a+b}
end
end
winners = []
max = answers_sums.max()
answers_sums.each_index do |i|
winners << i if answers_sums.at(i).eql?(max)
end
winners_sub_arrays = []
winners.each do |i|
winners_sub_arrays << contenders.at(i)
end
return winners_sub_arrays
end
begin
arr = Array.new
arr_str = ARGV.to_s
if arr_str =~ /\A\s*\[\s*-?\d+(?:\s*,\s*-?\d+)*\s*\]\s*\Z/
for el in ARGV do
el = el.match(/(\-*\d+)/)
arr << el[0].to_i
end
else
raise "Please specify an array in [a, b, c] format"
end
sub_arr = max_sub_array(arr)
if sub_arr.size > 1
puts "Max sub-arrays are: #{sub_arr.inspect()}".blue.bold
else
puts "Max sub-array is: #{sub_arr.inspect()}".blue.bold
end
rescue RuntimeError => e
$stderr.puts e.message()
end
#1st solution
require 'term/ansicolor'
include Term::ANSIColor
class Array
def sum_all_elements
self.inject {|a,b| a + b}
end
end
def find_min(arr)
arr = arr.dup
arr.collect! {|n| if n < 0 then n end}
arr.compact!
arr.empty? ? 0 : arr.sum_all_elements()
end
def max_sub_array(arr)
max = find_min(arr)
sub_arrays = []
(0...arr.size).each() do |n|
(1..arr.size-n).each() do |n2|
sum = arr[n, n2].sum_all_elements()
#puts arr[n, n2].inspect() + " = " + sum.to_s() #DEBUG LINE
if sum == max
sub_arrays << arr[n, n2].inspect()
elsif sum > max
max = sum
sub_arrays = []
sub_arrays << arr[n, n2].inspect()
end
end
end
sub_arrays
end
begin
arr = Array.new
arr_str = ARGV.to_s
if arr_str =~ /\A\s*\[\s*-?\d+(?:\s*,\s*-?\d+)*\s*\]\s*\Z/
for el in ARGV do
el = el.match(/(\-*\d+)/)
arr << el[0].to_i
end
else
raise "Please specify an array in [a, b, c] format"
end
puts "Max sub-arrays are: #{max_sub_array(arr).inspect.green.bold}"
rescue RuntimeError => e
$stderr.puts e.message()
end